
International Journal of Scientific & Engineering Research Volume 13, Issue 1, January-2022 171
ISSN 2229-5518

IJSER © 2022

http://www.ijser.org

Dictionary Attacks for the Franko-Arabic
Password using GPUs

Mohamed A. Khalil, Naglaa M. Reda, H. M. B. Ibrahim

Computer Science Division, Department of Mathematics, Faculty of Science, Ain Shams University, Cairo 11566, Egypt

Mohamed.ali@mof.gov.eg, naglaa_reda@sci.asu.edu.eg, h.m.bahig@gmail.com

Abstract—A password is the most important technique for a user authentication in application software. It is commonly secured by hashing

it. In this case, we call the hash value a hashed password. After that, the hashed password is saved in a password table. When a user logs

in his account, for example, this password is hashed again and compared with the saved hashed password in the password table to

authorize user access. Since graphics processing unit (GPU) hardware has recently advanced, we are interested to show the significant

speedup of GPUs over traditional central processing units (CPU's) in cracking passwords generated from the Franko-Arabic language and

hashed using SHA-3. We present the possibility of cracking the passwords constructed from Franko-Arabic language and hashed by

SHA3. We have been able to achieve high performance of cracking passwords using GPUs. As a result, our GPU implementation is faster

than highly optimized processors CPU. With this modern development and increased performance, "complex" passwords with up to 10

characters becoming possible to crack. To the best of our knowledge, this is the first paper that discusses the cryptanalysis (or cracking)

passwords constructed from the Franko-Arabic language.

Index Terms— Hash function, SHA-3, Password cracking, CUDA, GPU, Dictionary attack, Franko-Arabic language

—————————— ——————————

1 INTRODUCTION

ash functions [9] are very important aspect to achieve
some security issues such as message and entity au-

thentications and digital signatures. Users use passwords
to authenticate themselves to computer systems, while at-
tackers try to get those passwords back.
A hash function H is a function that maps arbitrary binary
strings (input data) into binary strings of fixed length
(output data).

H:

The hash function H should be efficiently applied to input
of different sizes.
The length of the output is less than that of the input, which
can be considered the reason why a hash function is called a
compression function. On the other hand, a compression func-
tion cannot be considered a hash function.
A hash function H is said to be secure if the following con-
ditions are satisfied.

1- Pre-Image Resistance (One-way property)

Given h ∈ {0, 1}n, it is computationally infeasible to
find m ∈ {0, 1}∗ such that H(m)= h. This property
measures how difficult it is to put a message m
which hashes in a known digest h. Therefore, H
must be a one-way function, i.e., it is computation-
ally infeasible to reverse the output of the hash
function. This property ensures that an attacker
cannot return, for example, a password if it is
hashed.

2- Second Pre-Image Resistance (weak collision re-

sistant)

Given m ∈ {0, 1}∗, it is computationally infeasible to
find m’ ∈ {0, 1}∗ , m≠m’ such that H(m) = H(m’).
This property measures how difficult it is to devise
of a hashes message into a known digest and its
message.
This property prevents an attacker, who knowing
the message m and its hash H(m), to replace the
message m with a different message m’, i.e., legit-
imate message instead of the original message m.

3- Collision Resistance (strong collision resistant)

It is computationally infeasible to find two distinct
messages m, m’ {0, 1}∗, such that H(m’) = H(m).
This property is also called the collision free hash
function. Since the hash function is a fixed length
compression function, it is impossible for a hash func-
tion not to have collisions. In addition, if the hash
function is collision resistant, then it is second pre-
image resistant.

When a hash function verifies the above three conditions,
we can say that a hash function is secure.

During the last 30 years, there are many proposed hash func-
tions, such as MD5, SHA-0, and SHA-1. But after successful
attacks on MD5, SHA-0, and SHA-1 [2][3][4] , National Insti-
tute of Standards and Technology (NIST) decided not to use
any one of them and to continue using SHA-2, since SHA-2 is
still secure. But NIST purposed SHA-3 to be ready substituted
for SHA-2 in computer system if necessary. So, we decided to
study the dictionary attack for Franko-Arabic passwords
hashed by secure hash function SHA-3.

H IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 13, Issue 1, January-2022 172
ISSN 2229-5518

IJSER © 2022

http://www.ijser.org

To the best of our knowledge, there is no article discuss the
cryptanalysis (or cracking) passwords constructed from the
Franko-Arabic language.
This paper is organized as follows. In Section 2, we describe
the Franko-Arabic language and why we choose it as the
characters set of the constructed passwords. In Section 3, we
give an overview of graphics processor units and compute
unified device architecture since we will use them in cracking
passwords. In Section 4, we describe a dictionary attack. In
Section 5, we present our experiment to crack passwords. The
conclusion is presented in Section 6.

2 THE FRANKO-ARABIC LANGUAGE

The Franco-Arabic language is a newly popular writing style
in the Arab world which the Latin alphabet and numbers are
used to replace certain Arabic letters in order to write Arabic
words phonetically. It isn't truly Arabic, nor is it truly English.
It's common for characters in the Franco-Arabic language to
use the Latin character that best resembles the sound of the
Arabic letter that would otherwise be used.

 Due to some reasons such as rising popularity of some
software and technologies, such as chatting, SMS, social
media and mobile phones, the Franko-Arabic language is
used rapidly in Arabic countries.

The set of characters of passwords is presented in Table 1.
Table 2 shows some examples of Franko-Arabic words.

Table 1 Franko-Arabic characters

Character in Arabic ج ث ت ب أ

Character in

Franko-Arabic

a b t th j

Character in Arabic ر ذ د خ ح

Character in

Franko-Arabic

7 kh d d‘ R

Character in Arabic ض ص ش س ز

Character in

Franko-Arabic

z s $, ch ,

sh

9 , S 9‘ , D

Character in Arabic ف غ ع ظ ط

Character in

Franko-Arabic

6 6‘ , Z 3 3‘ , gh F

Character in Arabic ن م ل ك ق

Character in

Franko-Arabic

8 , q k l m n

Character in Arabic ء ي و هـ

Character in

Franko-Arabic

h W , o i , Y 2

Table 2 Examples of Franko-Arabic password
with different sizes

Word(s) in Franko-Arabic
Word(s) in

Arab

t3raf تعرف

7bibi حبيبى

8mr قمر

al5yr الخير

mats2lsh ماتسئلش

th3lb ثعلب

5r6om خرطوم

3 GPUS AND CUDA

Due to a high computational power of graphics processor
units (GPUs), they are considered one of the most promising
technologies in the parallel computing field. GPUs have im-
proved the performance of many problems in different fields
of research, such as cryptanalysis of some cryptosystems [8].
Thousands of cores are in a single GPU. GPUs are considered
a heterogeneous model that works in conjunction with the
central processing unit, as seen in Fig. 1.

NVIDIA [1] invented Compute Unified Device Architecture
(CUDA), a general-purpose parallel programming model. It
makes use of the parallel compute engine built into NVIDIA's
GPUs to accelerate computational algorithms beyond the ca-
pabilities of the CPU. CUDA creates parallel programs by ex-
tending standard languages such as the C language. The CPU
initiates CUDA programs and sends instructions to the GPU,
which acts as a coprocessor. Because the GPU and CPU have
distinct memory architectures, it is necessary to move data to
the GPU memory prior to the GPU performing any data ma-
nipulations and vice versa. Kernel functions are those that run
on the GPU. At runtime, the GPU is in charge of parallelizing
the execution of kernel functions by utilizing threads as "exe-
cution resources". Threads are organized in blocks and com-
municate via shared memory. CUDA performs thread syn-
chronization via "barriers". Threads are executed in CUDA in
warps; all threads within a warp execute the same instruction

Fig. 1. GPU vs. CPU.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 13, Issue 1, January-2022 173
ISSN 2229-5518

IJSER © 2022

http://www.ijser.org

concurrently. Branching in conditional and iteration state-
ments are the most common code constructs that can result in
warp divergence.

4 DICTIONARY ATTACKS

There are different models to crack passwords. One of
them is a dictionary attack. In this model of attack, the at-
tacker uses pre-defined lists of words/passwords or a sim-
ple combination of several passwords. Examples of a dic-
tionary attack model are [6] [7]. There is no dictionary at-
tack on Franko-Arabic passwords. Thus, we are interested
to recover the passwords using dictionary attack.
We store, in a database, for each possible word/password
in a given dictionary the corresponding hash code. If an
attacker intercepts a hash code for a password, then he
looks it up in the database, and finds the matching pass-
word.
Let L be the set of words in a given dictionary. In general,
the probability of a successful attack is

|L|/N
Where denotes the number of words/passwords in the
given dictionary, and N denotes the number of possible
words of length less than or equal to N.

5 EXPERIMENTAL IMPLEMENTATION

This section presents the implementation details of our ex-
periment to crak passwords. It consists of three subsec-
tions. In Subsection 5.1, we describe the setting of the ex-
perimental studies including data set, hardware, and soft-
ware used. In Subsection 5.2, we present our implementa-
tion to crack passwords in some details. Subsection 5.3 con-
tains some examples.

5.1 PLATFORM OF EXPERIMENT

The implementation was done using the C++ language and
CUDA language (V.9.0). We also used MSSQL to store the
dictionary in a database. The specification of GPUs cards used
in our implementation are presented in Table 3. The computer
ran Microsoft Windows 10 operating system and with a speed
of 2.6 GHz and a memory of 8 GB.

Table 3 Specification of two GPUs cards

GPU-2 GPU-1 Item

GeForce GTX 770

2GB

GeForce GTX 1060

6GB

Device name:

3600000 4004000 Memory Clock Rate (KHz)

256 192 Memory Bus Width (bits):

 230.400000 192.192000 Peak Memory Bandwidth

(GB/s):

2048mb 6144mb Global memory:

48kb 48kb Shared memory:

64kb 64kb Constant memory:

65536 65536 Block registers:

32 32 Warp size:

1024 1024 Threads per block:

[1024 ,1024 ,64] [1024 ,1024 ,64] Max block dimensions

[2147483647 ,

65535]

[2147483647 ,65535] Max grid dimensions

5.2 IMPLENTATION DETAILS

We have generated a dictionary contains 22472030 Franko-
Arabic passwords. Then the following steps are done to crack
passwords.

a) We created a sequential application using the C++
language that calculates the hash value for passwords
in the given dictionary. It takes 2 days, 13 hours, and
51 minutes.

b) We created an application using the CUDA language
that calculates the hash values for passwords in the
given dictionary. Then we stored passwords and their
corresponding hash value in MSSQL server data-
bases. This is done by distributing millions of pass-
words on two GPUs cards. We reserved 44 blocks;
each block has 1024 threads for each card. Thus, the
number of passwords sent for each GPU card is equal
to the number of blocks multiplied by the number of
threads which is 44 * 1024 = 45056 passwords. Fig. 2
shows the application's workflow. After finishing cal-
culating hash values, we store in a database the pass-
words and the corresponding hash values. This pro-
cess took about 22 hours and 42 minutes. Clearly,
generating hash values all for passwords in a diction-
ary using GPUs is faster than generating them with-
out GPUs.

c) Now, given a hash value, it is easy in less than 1 sec-
ond to return the corresponding password or return
“not exist”.

d) Increasing the size of dictionary means increasing the
chance to return the correct password.

e) We have checked if there is a collision in the database.
We have found that, there is no collision in the calcu-
lated hash values.

5.3 EXAMPLES

The following are examples of hash values for some Franko-

Fig. 2 Uses of two GPUs.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 13, Issue 1, January-2022 174
ISSN 2229-5518

IJSER © 2022

http://www.ijser.org

Arabic words presented in Table 2 Examples of Franko-
Arabic passwords.

 The hash value of “t3raf” is

c359c83770d2d015e6f0ba9f4eeecdac324314f4d9977606a58bd90a6
fc0ac31c30f7e6ac8dea19aeebb0340144e563aabdf7e12447ff5b88f3
12f0866c878d8.

The hash value of “al5yr” is

d098b51869ef7364a291f39c09bb6a955ed93cc8e3e921c47c392a11
5cb67b81c86e8ddce31d0bf9a9f58b7cd57182d2e01201685d920f2
f0609a7b2e314b3d9.

The hash value of “5r6om” is

c10f9c136a89e243b90627eb0f55d43f091324927fdd2e83f4c9da7e
275bdd71fee0a451abf9ff07fae7bcd477670d2e718688e33568bedc
3ed470b222fa2917.

4 CONCLUSION

This paper has studied the possibility to crack passwords con-

structed from Franko-Arabic language and hashed by SHA-3.

Authors have generated a dictionary of 22472030 Franko-Arabic

passwords and calculated their hash values. Expermints shows

that if the password is in the dictionary, then the presented

program can easily crack the hashed password. This was

achieved by distributing the passwords on two GPUs cards, and

the use of multithreding with CUDA.

REFERENCES

[1] NVIDIA, "Nvidia cuda c programming guide, cuda toolkit
documentation," In NVIDIA CUDA C Programming
Guide, CUDA Toolkit documentation, 2017.

[2] C. R. Biham E., "Near-Collisions of SHA-0," in In: Franklin
M. (eds) Advances in Cryptology – CRYPTO 2004. CRYPTO
2004. Lecture Notes in Computer Science, vol 3152. Springer,
Berlin, Heidelberg, 2004.

[3] D. Chad R, "Vulnerability Note VU#836068 MD5
vulnerable to collision attacks. Vulnerability notes
database," CERT Carnegie Mellon University Software
Engineering Institute, 2008.

[4] B. E. K. P. A. A. M. Y. Stevens M., "The First Collision for
Full SHA-1," in In: Katz J., Shacham H. (eds) Advances in
Cryptology – CRYPTO 2017. CRYPTO 2017. Lecture Notes in
Computer Science, vol 10401. Springer, Cham, 2017.

[5] M. Sprengers, GPU-based Password Cracking, M.Sc.
Radboud University Nijmegen Faculty of Science
Kerckhoffs Institute, 2011.

[6] HashCat, "https://hashcat.net/hashcat," [Online].

[7] J. t. Ripper, "https://www.openwall.com/john," [Online].

[8] M. S. Esseissah, A. Bhery and H. M. Bahig, "mproving BDD
Enumeration for LWE Problem Using GPU," IEEE Access,
vol. 8, pp. 19737-19749, 2020.

[9] Menezes, A., Van Oorschot, P. C., and Vanstone, S. A.,
Handbook of Applied Cryptography, CRC Press, 1996.

IJSER

http://www.ijser.org/

